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Abstract
The size of deep neural networks has grown exponentially

in recent years. Unfortunately, hardware devices have not kept
pace with the rapidly increasing memory requirements. To
cope with this, researchers have turned to techniques such as
spilling and recomputation, which increase training time, or
reduced precision and model pruning, which can affect model
accuracy.

We present OLLA, an algorithm that optimizes the lifetime
and memory location of the tensors used to train neural net-
works. Our method reduces the memory usage of existing
neural networks, without needing any modification to the mod-
els or their training procedures.

We formulate the problem as a joint integer linear program
(ILP). We present several techniques to simplify the encoding
of the problem, and enable our approach to scale to the size
of state-of-the-art neural networks using an off-the-shelf ILP
solver. We experimentally demonstrate that OLLA only takes
minutes if not seconds to allow the training of neural networks
using one-third less memory on average.

1. Introduction
Scale is a major force behind the accuracy improvements
of machine-learning-based solutions [9], and both the depth
and width of deep neural networks (DNN) are expanding ex-
ponentially [66] (Figure 1). This inflation in size increases
the memory needed to store the weights of the neural net-
work and the intermediate results (e.g., activations and gradi-
ents) generated during the training process. Compounding the
problem, researchers are training neural networks on larger
inputs, such as high-resolution images [22, 71], video [28],
three dimensional point-clouds [14], long natural language
sequences [75, 15, 21], and using larger batch sizes to increase
efficiency [69].

Unfortunately, due to the slowing of Moore’s law, the mem-
ory capacity of hardware has only increased linearly over the
last decade (Figure 2). Thus, the amount of memory available
on the hardware used to train DNNs has not kept pace with
the needs of deep learning. Furthermore, features powered by
machine learning, such as automatic speech recognition [63]
or keyboard suggestions [35], are being personalized by fine
tuning models on-device. This means that model training is
increasingly being pushed to even more memory constrained
edge devices such as smartphones. As a result, memory is
increasingly becoming a bottleneck that hinders progress, and
researchers frequently mention memory scarcity as a limiting
factor that impacts their work [47, 36, 12, 18, 15].
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Figure 1: The number of deep neural network parameters has
increased by 100,000 fold over the last 10 years, starting to
grow exponentially around 2016. The x-axis is plotted on a log
scale.

The research community has proposed several solutions to
mitigate the problem. Data spilling [54] and recomputation
of intermediate results [43] relieve memory pressure. Novel
neural network architectures [40] use memory more sparingly.
Strategies such as reduced precision training [76, 78, 45] and
weight pruning [56, 24, 37] decrease memory requirements.
However, these all come at the cost of decreasing the accuracy
of the model, or increasing the time it takes to train it, or
both [49, 7, 57].

Popular deep learning frameworks such as PyTorch [61]
and TensorFlow [1] do not fully utilize the limited memory
available. Similar to traditional dynamic memory allocators
such as tcmalloc [32] and jemalloc [26], these frameworks
maintain a pool of free blocks of memory at runtime. To serve
memory requests, they look for a large enough memory block
in the memory pool, or allocate it from the physical memory
if none is available. This results in memory fragmentation
when free memory blocks do not exactly match the size of an
allocation request, which occurs frequently.

Furthermore, DNN frameworks do not optimize tensor life-
times. PyTorch [61] executes operations in the order in which
they are defined in the program. TensorFlow [1] keeps a queue
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Figure 2: The memory capacity of NVidia datacenter GPUs (in
gigabytes) has only increased tenfold over the last decade,
which has not kept pace with the rapidly increasing size of
deep neural networks. The x-axis is plotted on a linear scale.

of operators that are ready to run, and executes them on a first-
come, first-served basis. As a result, tensors can be allocated
earlier than required, or freed later than necessary, wasting
valuable memory.

Our method overcomes these two limitations of existing
deep learning frameworks. We model the computations per-
formed to train a deep neural network as a dataflow graph
of operations. We analyze this graph to find a topological
ordering of the nodes that adjusts the lifetime of the tensors
generated by these operations to minimize the peak amount
of memory that needs to be allocated (Figure 3). Furthermore,
we find an optimal packing of these tensors, which minimizes
memory fragmentation (Figure 4). We encode these two ob-
jectives as an integer linear program (ILP) that can be solved
quickly by commodity solvers, and present OLLA (Optimiza-
tion of the Lifetime and Location of Arrays), our algorithm
for memory-optimal training of neural networks.

In addition to significantly reducing memory usage, our
solution has four key strengths. First, it does not impact the
accuracy of the predictions of the neural networks. Second, it
requires no modification to the neural network or the training
procedure. Third, it doesn’t increase training time. Fourth,
it is orthogonal to and can be combined with other memory
reductions techniques to further reduce the memory needs of
a neural network.

Our work makes the following novel contributions:
• We formulate the problem of finding the lifetime and mem-

ory location of tensors that minimizes the peak memory
required to train neural networks as a joint integer linear
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Figure 3: Node execution orders can impact peak memory us-
age. Edges are annotated with the size of their corresponding
tensors, and the two feasible node orders are annotated with
the set of edges resident in memory at each step. Running v2
before v3 is significantly more memory efficient.

program.
• We demonstrate how to leverage domain knowledge to

simplify the ILP formulation, which enables off-the-shelf
solvers to quickly reduce the memory usage of large DNNs.

• We study empirically the practicality and effectiveness of
our solution on a wide variety of DNNs, which achieves
average memory savings exceeding 30% in a median time
of less than 10 seconds.

2. Background

2.1. Representing Neural Networks as Dataflow Graphs

Deep neural networks can be represented using dataflow
graphs, as pioneered by TensorFlow [1]. The nodes of the
graph encode the computations to be performed (e.g. matrix
multiplications, convolutions, activation functions), while the
edges represent the data (aka tensor or array) that is produced
by an operation and transferred to consumer nodes.

Due to the producer-consumer relation between connected
nodes, edges are oriented. Each edge has exactly one source,
which is the operator that generated the corresponding tensor.
Since a tensor can be consumed by more than one node, edges
can have multiple sinks.

Operators can have multiple incoming (aka fanin) edges.
Typically, one of these incoming edges will be the tensor
generated by the previous layer, and another one will be a
weight tensor. Similarly, operators can have multiple outgoing
(aka fanout) edges: while most operations generate a single
output tensor, some may create two or more. Operators with no
fanout edges are used to model the final outputs of the neural
network. Operators without fanin edges can model random
number generators, constants, weights, or initial inputs to the
neural network.

In the remainder of this paper, we assume that the graphs
are acyclic. In practice, this is not a significant limitation
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since recurrent neural networks such as LSTM [39] have been
eclipsed by transformers [75]. Furthermore, their loops can be
unrolled to avoid the problem altogether.

2.2. Optimizing Tensor Lifetimes

In order for an operator to run, all its input tensors must be
resident in memory, and its output tensors must have been
allocated so that they can be written to while the node ex-
ecutes. Additionally, to avoid recomputing tensors, once a
tensor is generated it must be preserved in memory until all
its consumers have been run.

We define the resident set RS(t) at a given time t as the
set of tensors that need to be kept in memory at that point in
the execution of the neural network. It comprises the tensors
in the fanin and fanout of the operator that is scheduled for
execution at timestep t, as well as all the other tensors that
were previously generated but need to be kept in memory to
be able to run subsequent operators. The peak resident set is
the largest resident set over the execution of the network.

The order in which nodes are executed impact the lifetime
of the tensors, and therefore the peak working set. Figure 3
illustrates a simple example where changing the operator or-
dering noticeably improves memory usage.

Among all possible node orderings, those prioritizing the
execution of nodes that free large amounts of data while gen-
erating little output data themselves, are likely to be more
efficient. However, as demonstrated in prior works [5, 8],
finding an optimal scheduling for a generic DAG is an NP-
complete problem, which cannot be solved with a simple
greedy approach.

2.3. Optimizing Tensor Locations in Memory

Similar to malloc-style memory allocators, the tensor allo-
cation schemes used by typical deep learning frameworks
operate online and suffers from fragmentation. Indeed, free
memory is often segregated into small blocks and interspersed
by memory allocated to live tensors. As a result, a significant
fraction of the total memory is effectively unusable because
it is divided into pieces that are not large enough to fit a ten-
sor. Figure 4 illustrates this phenomenon, and demonstrates
that planning the location of each tensor ahead of time can
significantly reduce the overall peak memory usage.

3. Formulation
We propose to take advantage of the predictability of neural
network computations to proactively Optimize the Lifetime
and Location of Arrays (OLLA).

We formulate the problem of optimizing the ordering of
computations (which determines the tensor lifetimes) and the
location of tensors in memory (which determines the amount
of memory fragmentation) of generic data-flow graphs, in-
cluding those used in neural network training. We encode the
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Figure 4: Memory fragmentation can cause allocation to fail.
A greedy allocator (top) would not leave any room between
tensor A and B, thus making the space unusable for tensor C
once A is freed. OLLA (bottom) leaves a gap between tensor A
and B to enable the reuse of the memory freed by tensor A and
fits all the tensors in memory.

problem as an integer linear program, and use an off-the-shelf
ILP solver to find a solution that minimizes the peak memory
required to run the dataflow graph.

We solve the ILP problem ahead of time, before the training
process starts. This results in a small one-time initial cost,
which can be recouped over the duration of the training: as
free space does not need to be found at runtime, our memory
allocation and deallocation operations are much cheaper than
that of a standard allocator, thus saving some time at each
training step (section 5.7).

3.1. DNN representation

As mentioned in section 2.1, we model a neural network as a
directed acyclic graph G = (V, E) with n nodes V = v1, ...,vn
that represent the operators and the neural network, and m
edges E = e1, ...,em that encode the tensors exchanged by
operators. The size in bytes of the tensor represented by edge
ei is denoted as Si. The source vertex of edge e is denoted
src(e). The set of sink vertices of edge e is denoted snks(e).

The set of edges in the fanout of a node v is denoted f o(v),
while the set of edges in its fanin is represented as f i(v). We
will also denote f i(e) the set of edges in the fanin of the source
vertex of e. We represent by sib(e) the siblings to an edge
e, that is the collection of edges that are driven by the same
source vertex.

We model time as a discrete set of timesteps T = t1, ..., tn. A
single operation typically runs per timestep, but it is possible
for several operations to execute concurrently. Therefore, we
need at most n timesteps to schedule a graph with n operations.

3.2. Encoding Tensor Lifetimes

We capture the execution of a neural network as a series of
tensors being allocated or preserved over time. To do this, we
use two sets of binary variables:
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• A variable labeled Ce, t ∈ {0,1} indicates whether or not the
tensor e should be created (i.e. allocated) at timestep t by
running its source vertex.

• A variable named Pe, t ∈ {0,1} reflects whether tensor e
needs to be preserved in memory at timestep t or whether it
can be freed.

We leverage a set of linear constraints to ensure that the
sequence of tensor creations and preservations reflects a valid
execution sequence of the neural network corresponding to a
feasible topological ordering of the DAG.

First, a tensor e can either be created or preserved at each
timestep t, but not both (equation 1). Note that it’s possible for
both Ce, t and Ce, t to be false, which indicates that the tensor
does not reside in memory at this point in time.

∀e ∈ E, ∀t ∈ T Pe, t +Ce, t ≤ 1 (1)

Second, a tensor e can be preserved in memory at timestep
t if and only if it was created or preserved at the previous
timestep (equation 2).

∀e ∈ E, ∀t ∈ T Pe, t ≤ Pe, t−1 +Ce, t−1 (2)

Third, to ensure that the solver does not simply avoid run-
ning any of the operators, we force every tensor e to be created
once through equation 3.

∀e ∈ E ∑
t∈T

Ce, t = 1 (3)

Fourth, a tensor e can only be created by running its source
operator v. In order to do so, all the tensors in the fanin of v
must be present in memory (equation 4).

∀e ∈ E, ∀t ∈ T , ∀ f ∈ f i(e) Ce, t ≤ Pf , t (4)

Last but not least, we also need to make sure that operators
with multiple outputs create their output tensors at the same
time. We achieve this by tying the values of the Cs,t variables
for all the siblings s to a tensor e in equation 5.

∀e ∈ E, ∀t ∈ T , ∀s ∈ sib(e) Cs, t =Ce, t (5)

The combination of constraints 1 through 5 ensures that all
the feasible solutions to the ILP correspond to valid schedules.
They guarantee that the creation timestep of each tensor corre-
sponds to a topologically feasible ordering of the vertices of
the graph. Moreover, they force the preservation in memory of
each tensor from the time it is generated until the last timestep
in which it is consumed.

3.3. Encoding Tensor Locations

To let our solver also optimize the placement of tensors in
memory, we assign an integer variable Ae ∈ [0,M] to each
tensor e that encodes its base address. Here, M = ∑e Se, which
corresponds to the worst case scenario where all the tensors
reside concurrently in memory.

We also introduce two binary variables ai, j ∈ {0,1} and
bi, j ∈ {0,1} for each pair of tensors i and j. We constrain
them through equation 6 in such a way that either ai, j or bi, j
is equal to 1 if both tensors reside in memory concurrently at
any point in time, but can be 0 otherwise.

∀t ∈ T , ∀(i, j) ∈ E2 ai, j +bi, j ≤ 1
ai, j +bi, j ≥ livei,t + live j,t −1

where livei,t =Ci,t +Pi,t

and live j,t =C j,t +Pj,t

(6)

We use these variables to prevent the overlap of tensors that
reside in memory at the same time in equations 7a and 7b.

∀(i, j) ∈ E2 Ai +Si−A j ≤ (1−ai, j)∗M (7a)

∀(i, j) ∈ E2 Ai−A j−S j ≥ (bi, j−1)∗M (7b)

If ai, j takes the value 1, equation 7a degenerates into
Ai + Si ≤ A j. This forces tensor i to reside below ten-
sor j in memory. Similarly, equation 7b degenerates into
Ai ≥ A j + S j when bi, j takes the value 1, which forces ten-
sor i to be placed above tensor j. On the other hand, if ai, j and
bi, j take the value 0, equations 7a and 7b hold for any value
of Ai and A j in the range [0,M]. In other words, they don’t
impose further restrictions on the location of ei and e j.

Put altogether, constraints 6, 7a, and 7b ensure that tensors
can share the same memory space if and only if their lifetimes
do not overlap.

3.4. Minimizing Peak Memory Usage

We track the peak memory usage by introducing a variable
peak_mem that we constrain as follow:

∀e ∈ E Ae +Se ≤ peak_mem (8)

We find the schedule of operators and memory location of
tensors that optimizes the memory usage of the neural network
by feeding program 9 to an ILP solver.

arg min
C,P,A

peak_mem

sub ject to (1),(2),(3),(4),(5),
(6),(7a),(7b),(8)

(9)

3.5. Decoding the ILP Result

Given a feasible solution to our ILP, we generate an optimized
execution sequence of operations ES = (s1, ..., sk) for the
neural network using function 1.

Note that our algorithm may generate duplicate execute(v)
statements in the case where a node v has multiple edges in
its fanout. These redundant statements need to be removed to
ensure the correctness of the final program.
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Function 1 GenerateExecutionSequence(C)
▷ Converts the output of the ILP into an optimized
▷ execution sequence of operations seq.
seq = []
for t in T do

for e in E do
if Ce,t = 1 then

add execute(src(e)) to seq
end if

end for
end for
return seq

Tensors are stored in a shared preallocated buffer B sized to
accommodate the peak memory usage. The value of each Ae
variable represents the offset location of tensor e in B.

We can map memory allocation requests to addresses over
multiple iterations of the training loop as follow. We’ll assume
that each operator generates a single output tensor for the sake
of simplicity, but our approach generalizes to handle operators
with multiple outputs. The kth memory allocation request
corresponds to the tensor generated by the operator located at
position k mod |V | in the execution sequence ES. This tensor
e is to be located at address AB +Ae, where AB is the base
address of buffer B. Memory deallocation requests are no-ops.

4. Scaling to Large Neural Networks

Our formulation requires 2×|E|× |V | binary variables since
we have one C and one P variable per tensor per timestep, as
well as |A| integer variables to track tensor addresses. Addi-
tionally, we create O(|V |× |E|) constraints to encode tensor
precedence and life cycle requirements, and O(|V | × |E|2)
constraints to ensure that tensors never overlap in memory.

We develop five techniques to reduce the complexity of
the ILP formulation and enable our approach to scale well.
This permits OLLA to optimize the memory usage of neural
networks with complex tensor computation graphs comprised
of thousands of vertices and edges.

4.1. Bounding Lifetime Ranges

All of the input tensors of a node must reside in memory for it
to run at a given timestep. This means that all the operators in
the immediate fanin of the node must have been run at least
one timestep prior. As a result, we can identify the earliest
timestep ASAP(v) (“as soon as possible”) during which a node
v can run. ASAP(v) is the longest distance from v to an input
of the neural network, which is computed in linear time using
a simple depth first search traversal of the graph [3]. Using
the same approach, we can also identify the latest timestep
ALAP(v) (“as late as possible”) at which a node v can run,
which is the longest distance from v to an output of the neural
network.

A node v can only run within the span [ASAP(v),ALAP(v)].
Since tensors are created when their source node is run, a
variable Ce,t will always be false outside the span of their
source node (Equation 10).

SPAN(v) = [ASAP(v),ALAP(v)]

∀e ∈ E, ∀t /∈ SPAN(src(e)) Ce,t = 0
(10)

Furthermore, a tensor only needs to be preserved in memory
until all its sink operators have run. This enables us to define
the Maximum Useful Lifetime (MUL) range of a tensor, and
set the variable Pe,t for a tensor e to false outside of this range
(Equation 11).

MUL(e) = [ASAP(src(e)), max
s∈snks(e)

ALAP(s)]

∀e ∈ E, ∀t /∈MUL(e) Pe,t = 0
(11)

Additionally, tensors must be preserved in memory from
the time they are created until their last sink node has run.
Therefore, Pe,t must always be true from the last timestep at
which e can be created until the earliest timestep at which its
last sink can run (Equation 12).

PRES(e) = [ALAP(src(e)+1, max
s∈snks(e)

ASAP(s)]

∀e ∈ E, ∀t ∈ PRES(e) Pe,t = 1
(12)

This enables us to reduce the number of timesteps to track
for each tensor. In the best case scenario, where a neural
network is a linear sequence of operators, the span of each
node v is reduced to a single timestep, and we can derive
the values of all the Ce,t and Pe,t purely from the structure of
the graph. However, in the opposite extreme case where a
neural network consists exclusively of operators that can run
in parallel, we cannot infer any of the values of the Ce,t and Pe,t
variable. The structure of real neural networks lies somewhere
between these two extremes.

4.2. Leveraging Precedence Constraints

We simplify our memory placement formulation by skipping
constraints 6 7a and 7b whenever we can determine that two
tensors can never reside in memory at the same time. We
exploit two sufficient conditions to achieve this.

First, we leverage the Maximum Useful Lifetime ranges
from our ASAP/ALAP analysis. If the MUL ranges of two
tensors do not overlap, they will never be present concurrently
in memory.

We complement this first condition with a precedence anal-
ysis. If a vertex v2 is reachable from another vertex v1 (i.e. if
v1 is in the transitive fanin of v2), the corresponding operator
v1 must be run before operator v2. Therefore, if all the sink
vertices of an edge e1 are in the transitive fanin of the source
vertex of an edge e2, e1 and e2 can only be present in memory
if there is a vertex v such that e1 is one of the fanout edges of
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Figure 5: Edge precedence: e1 ≺prec e2 since the sinks v3 and
v4 of e1 are both in the transitive fanin of the source node of
e2, and e1 and e2 have no vertex in common.

v and e2 is one of its fanin edges (Figure 5). We call this con-
dition ≺prec, and if either condition e1 ≺prec e2 or e2 ≺prec e1
holds e1 and e2 can never reside together in memory.

We use a simple depth-first search (Function 2) to determine
whether a vertex v2 is reachable from a vertex v1. We leverage
memoization to ensure that answering the query for a pair
(v1,v2) yields to constant time queries for all future queries
(v,v2) that involve a vertex v on a path from v1 to v2.

Function 2 IsInTransitiveFanin(v1, v2, cache)
▷ Returns true iff v2 can be reached from v1.
if (v1,v2) in cache then

return cache[(v1,v2)]
end if
for f in f i(v2) do

if src( f ) = v1 then
cache[(v1,v2)]← true
return true

end if
if IsInTransitiveFanin(v1,src( f )) then

cache[(v1,v2)]← true
return true

end if
end for
cache[(v1,v2)]← false
return false

4.3. Enforcing Early Memory Deallocations

Running a weight update operation enables the freeing of the
corresponding gradient tensor. Applying these updates early
reduces memory pressure, and conversely, there is no benefit
to delaying their execution. To speed up the tensor lifetime
optimization process, we prevent the solver from considering
running these nodes late in the computation.

To achieve this, we look for a good anchor node, and add an
edge of size 0 (which we call a control edge) from the gradient
update node to this anchor node. The control edge forces the
ALAP time of the gradient node to be less than that of the
anchor node, but has no impact on memory usage since its
size is 0. The anchor node must meet two criteria:

• Its level must be greater than that of the weight update node
in the graph levelization [17]. This prevents the introduction
of a loop through the control edge in the graph.

• A good anchor candidate must be scheduled early in the
computation itself. We determine this by running the lev-
elization on a copy of the DAG in which the directions of all
the edges are reversed, and looking for a node with a high
backward level.

We start the search for anchor nodes in the immediate fanin
of the weight update vertex, and progressively expands the
search radius until we find a suitable node as detailed in Func-
tions 3 and 4.

Function 3 EnforceEarlyWeightUpdates(G)
▷ Adds control edges to G to force the weight update nodes
▷ to run early. The pseudo code for FindCandidate is
▷ provided in Function 4.
f wd_lvl←ComputeLevelization(G)
bwd_lvl←ComputeReverseLevelization(G)
for v in gradient update nodes of G do

min_ f wd_level← f wd_lvl[v]
best_bwd_level←−1
best_anchor← none
search_starts← set(v)
visited← hashtable()
while not best_anchor and len(search_starts)> 0 do

next_starts← set()
for v in search_starts do

for f in f i(v) do
add src( f ) to next_starts

end for
end for
search_starts← next_starts
for src in search_starts do

candidate, level← FindCandidate(src,
f wd_lvl,bwd_lvl,min_ f wd_level,visited)

if level > best_bwd_level then
best_bwd_level← level
best_anchor← candidate

end if
end for
if best_anchor then

add control edge from v to best_anchor
end if

end while
end for

4.4. Splitting the Problem

We noticed empirically that OLLA is always able to fully elimi-
nate memory fragmentation. Therefore, without loosing opti-
mality, we can divide the problem in two subproblems that are
faster to solve sequentially.
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Function 4 FindCandidate(v, fwd_lvl, bwd_lvl, min_fwd_lvl,
visited)

▷ Find a candidate anchor node starting the search from
▷ node v.
if v in visited then

return visited[v]
end if
best_bwd_level←−1
best_candidate← none
for f in f o(v) do

for snk in snks( f ) do
if bwd_lvl[snk]≤ best_bwd_level then

continue
end if
if f wd_lvl[snk]≤ min_ f wd_level then

candidate, level← FindCandidate(snk,
f wd_lvl,bwd_lvl,min_ f wd_level,visited)

if level > best_bwd_lvl then
best_bwd_level← level
best_candidate← candidate

end if
else

best_bwd_level← bwd_lvl[snk]
best_candidate← snk

end if
end for

end for
visited[v]← (best_candidate,best_bwd_level)
return (best_candidate,best_bwd_level)

We first look for the schedule of operations that leads to
the smallest peak memory usage under the assumption that
we will be able to locate tensors in memory later on without
introducing any fragmentation. We compute this peak memory
usage metric, peak_mem_no_ f rag, by leveraging the C and P
variables in equation 13:

∀t ∈ T ∑
e∈E

(Ce, t +Pe, t)×Se ≤ peak_mem_no_ f rag (13)

The problem of optimizing the lifetime of tensors without
considering fragmentation is then formulated in equation 14:

argmin
C,P

peak_mem_no_ f rag

sub ject to (1),(2),(3),(4),(5),(13)
(14)

Given a solution to (14) we tackle the problem of optimizing
the location of tensors in memory by solving equation 15:

argmin
A

peak_mem

sub ject to (6),(7a),(7b),(8)
(15)

4.5. Finding Suitable Memory Locations for Activations

DNN gradients are computed in reverse order of the activa-
tions. Since an activation is preserved in memory until the
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Figure 6: Mixed tensor placement: function 5 assigns ad-
dresses to the tensors marked PRE, while the ILP solver as-
signs addresses to the tensors marked ILP.

corresponding gradient computation takes place, the earlier
an activation tensor is allocated the later it is freed. We place
these tensors in memory in a manner that maximizes the usabil-
ity of the unallocated memory. After determining the tensor
lifetimes with equation 14, we order them by decreasing SPAN
(equation 10), and place them at increasing memory addresses
to form what looks like a pyramid as illustrated in Figure 6.
This process is detailed in algorithm 5. The ILP solver assigns
addresses to the remaining tensors.

This speeds up the ILP solver in two ways. First, the number
of tensors it needs to place in memory is decreased signifi-
cantly. Second, the address space available for these tensors is
noticeably reduced.

Although it is a heuristic, this memory preplacement ap-
proach does not compromise OLLA’s ability to eliminate frag-
mentation as we will show in section 5.4.

5. Experiments
We measured the impact of OLLA on the memory usage of
DNN training. We tried to answer the following questions:
• How effective are our two strategies of node reordering and

address generation at reducing memory usage?
• How applicable is our approach? Can one reasonably expect

to benefit from it on their use case, or is it more effective in
some scenarios than others?

• How practical are our algorithms? Can they be applied to
large neural networks in a reasonable amount of time?

5.1. Experimental Setup

We implemented OLLA on top of PyTorch version 1.11 [61]
with torchtext 0.12 and torchvision 0.12. We leveraged
torch.FX to convert neural networks into executable sequences
of operator calls, and reconstructed the computation graphs
from the operator arguments. We encoded and solved the mem-
ory optimizations problems (9), (14) and (15) using Gurobi
version 9.1.1 [34]. We translated the Gurobi results into opti-
mized execution sequences and memory locations as described
in section 3.5.
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Function 5 PreAllocateAddresses(G)
▷ Find memory locations for a subset of the tensors.
min_start← 0
max_end← ∞

base_address← 0
processed← set()
while max_end > min_start do

max_duration← 0
next_step← none
for e in E do

f irst_use← ASAP(src(e))
last_use←maxs∈snks(e) ALAP(s)
if f irst_use < min_start then

continue
end if
if last_use > max_end then

continue
end if
if tensor in processed then

continue
end if
duration← last_use - f irst_use
if duration > max_duration then

max_duration← duration
next_step← tensor

end if
end for
if not next_step then

break
end if
Anext_step← base_address
base_address← base_address+Snext_step
min_start← f irst_use
max_end← last_use
add next_step to processed

end while

We ran all our experiments on a workstation featuring a
Intel Xeon Gold 6138 CPU running at 2.0 GHz and a NVidia
A100 GPU with 40GB of memory.

5.2. Methodology

We evaluated OLLA on a comprehensive set of neural networks.
We included the ResNet [36] and Transformer [75] models
since they are ubiquitous and used in many downstream tasks:
the former introduced the concept of residual connection, and
the later popularized the attention mechanism. We also in-
cluded neural networks designed for specific tasks, such as
computer vision (AlexNet [47], VGG [68], GoogleNet [70]),
video understanding (ResNet3D [74]), and language mod-
elling (XLM-R [16]).

In addition to these models that were designed to run on
datacenter hardware, we also evaluated our approach on Effi-
cientNet [73] and MobileNet [40]. These two neural networks

0%

10%

20%

30%

Alex
Net

Effic
ien

tN
et

Goo
gle

Net

MNASNet

Mob
ile

Net

Res
Net

Res
Net3

D

Tran
sfo

rm
er

VGG VIT

XLM
-R

Batch size 1 Batch size 32

Figure 7: Peak memory reduction (in %) compared to PyTorch
as a result of our node reordering.

were tailored to run in resource constrained environments such
as edge devices. Additionally, we trained the neural networks
at batch size 1 and 32. Batch size 1 is commonly used when
training a model on devices with limited memory capacity,
while batch size 32 is used often when running in datacenters.

To be representative of the evolution of DNN designs over
time, we made sure our models cover almost a decade of ma-
chine learning research, starting with AlexNet [47] which was
published back in 2012 and ending with VIT [23] which was
released in 2020. We also tested our approach on MNAS-
Net [72], a model designed by a computer using an automated
process called neural architecture search [25].

To validate the scalability of our solution, we tested it on
neural networks as small as Alexnet [47] (118 operators) and
as large as XLM-R [16] (2007 operators).

5.3. Memory Reduction Resulting from Node Reordering

To evaluate the impact of our tensor lifetime optimization, we
compared the peak memory necessary to run various neural
networks when using the PyTorch node ordering and the node
ordering determined by algorithm 14. In our measurements,
we eliminated the impact of memory fragmentation by record-
ing the peak memory PyTorch operators need to request to run
these models under both node orderings instead of the actual
memory usage.

We find that OLLA reduces peak memory usage by up to 38%
compared to PyTorch (Figure 7). On average, our solution
achieves a reduction of 22.5% at batch size 1 and 10.1% at
batch size 32.

The activations generated during the forward pass are pre-
served in memory for the backward pass of the training. As
a result, OLLA has little to no ability to decrease the memory
usage of the forward pass. On the other hand, the order of
the computation and application of the gradients with respect
to the weights offers a great deal of flexibility, which OLLA

leverages to decrease the memory usage of the backward pass.
However, the gradients are are roughly smaller than the acti-
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Figure 8: PyTorch memory fragmentation (in %) during training
at various batch sizes. Our method fully eliminates fragmenta-
tion.

vations by a factor of batch size. Therefore, at larger batch
sizes, most of the memory is used to store activations, while
at smaller batch size gradients represent a larger fraction of
the total. This explains why our approach is more effective at
small batch sizes.

5.4. Memory Savings Coming from Address Generation

We define the fragmentation of a memory allocator as the
difference between the memory the allocator needs to reserve
from the hardware MR and the size of the resident set RS. We
measure it when MR reaches its peak value using the ratio
(MR−RS)/MR.

In all scenarios our address generator can completely elim-
inate memory fragmentation. By contrast, PyTorch suffered
from an average fragmentation of 7.9% at batch size 1, and
26.1% at batch size 32 (Figure 8). The PyTorch memory al-
locator uses a different strategy for small and large objects,
which could explain why fragmentation is significantly worse
for the larger batch size. However it is unclear whether it could
be modified to better handle large tensors without introducing
other drawbacks.

5.5. Node Ordering Time

Solving for equation 14 to optimize node orderings takes a me-
dian of 1.4±0.2 seconds. Excluding the outlier EfficientNet,
the worst case optimization time is 5.2 seconds, and the best
case is 100 milliseconds (Figure 9). For EfficientNet, OLLA
needs 2 minutes to find the optimal node ordering at batch size
1 and 5 minutes to find a solution that is within 1% of optimal
at batch size 32 (Figure 10).

OLLA only needs a small fraction of the time it takes to
train a neural network to optimize the lifetime of tensors and
significantly reduce the peak memory usage.

5.6. Address Generation Time

Leveraging equation 15, OLLA eliminates fragmentation in a
median time of 5.7±0.6 seconds (Figure 11). While it takes
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Figure 9: Node ordering times (in seconds) for training graphs
at batch sizes 1 and 32. We tack the result for EfficientNet in
figure 10 to improve readability.

16%

18%

20%

22%

24%

26%

28%

100 200 300 400 500 600

EfficientNet (batch size 1) EfficientNet (batch size 32)

Figure 10: Memory saved (in %) as the results of node reorder-
ing over time (in seconds). OLLA finds the optimal solution
given enough time (10 minutes).

significant effort to find optimal solutions for GoogleNet and
EfficientNet, OLLA reduced fragmentation to less than 1% in 5
minutes or less for these two models. We plot the evolution
of the memory fragmentation over time in these two cases in
Figure 12.

5.7. Practical Use

Since our optimizer runs ahead of time, it’s important that it
completes its task in a short amount of time to avoid negatively
impacting the user friendliness of the overall system. We
achieved a balance between memory savings and usability
by enforcing a 5 minute time limit on both the lifetime and
location optimizations. Figure 13 shows the overall reduction
in peak memory usage achieved within these time limits. OLLA
achieves an average improvement of 30.4% at batch size 1,
and 36.1% at batch size 32.

PyTorch relies on dynamic memory allocation, which intro-
duces some runtime overhead with each tensor allocation and
deallocation. We compared the initial runtime penalty of our
approach against the time the PyTorch allocator takes to man-
age memory while training neural networks at batch size 32.
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figure 12.
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Figure 12: Memory fragmentation as a percentage of total
memory usage for various optimization times (in seconds).
The memory fragmentation decreases quickly towards 0 as the
solver is given more time to find an optimal solution.
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Figure 13: Total reduction in peak memory usage (in %) during
training at various batch sizes compared to PyTorch. The
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Figure 14: Runtime savings (in seconds) over PyTorch while
training at batch size 32.

We assume that 1,000,000 iterations through the training loop
are required to train a neural network, which is equivalent to
processing the entire ImageNet [20] dataset 25 times, and cor-
responds to 8 training epochs on the IWSLT2017 dataset [10].
Our approach proved to be slightly more runtime efficient
overall, saving an average of 5 minutes (Figure 14).

Note that we didn’t directly measure the total training time
under both memory management schemes to reduce the noise
in the measurements. Additionally, we didn’t report our es-
timated runtime savings at batch size 1 since the premises
of this use case, typically encountered on-device, are very
different: while each user would only perform a few training
iterations, our optimizations would be applied before shipping
the application.

6. Related Work
Various approaches, complementary to ours, have been pro-
posed to break the “memory wall” and train larger networks.
The first technique distributes the computation for a single
forward-backward iteration over several hardware devices,
thus making more memory available overall. However, this
approach, known as model parallelism [46], significantly in-
creases the financial cost of training deep neural networks
since it requires access to additional expensive compute ac-
celerators and fast networks. Furthermore, partitioning a
deep neural network efficiently to balance communication
and computation remains an open problem still actively re-
searched [31, 44, 55].

In parallel, the research community has developed numer-
ous solutions to reduce the memory footprint of deep neural
networks:
• Novel neural network architectures reduce the number of pa-

rameters needed to achieve a given level of accuracy [41, 73].
Furthermore, automated search techniques known as neural
architecture search [72] have been proposed to automatically
design memory efficient models. The main drawbacks of
these methods are that they are time consuming to deploy,
and fail to match the result quality of state of the art DNNs.
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• Model compression methods [6] prune [53, 29, 56, 24, 37]
or share [19] weights to improve the efficiency of the model
parameterization. However, the majority of these techniques
require training the unpruned neural network first, and are
therefore most useful for inference.

• Training using reduced precision arithmetic on 16-bit float-
ing point or even quantized representations [76, 78, 45]
significantly reduces memory [27, 50]. However, these tech-
niques can compromise the accuracy of the neural networks,
make training unstable, and require careful implementation
to be deployed successfully [59, 51].

Several efforts have looked at the problem from a systems
perspective, and presented solutions to reduce pressure on the
memory subsystem. These techniques encompass:
• In-memory tensor compression, which can result in minimal

accuracy loss in many DNN applications [11, 42]. However,
this comes with a runtime penalty, since the data must be
compressed and uncompressed on the fly.

• Rematerialization, also known as checkpointing, discards
activations in the forward pass to save memory, and recom-
putes those values as needed when computing the gradients.
Numerous strategies to identify which activations to discard
have been proposed [43, 77, 13, 33, 67]. While effective at
reducing memory usage, these techniques add extra compu-
tations, which increases the training time.

• Paging, aka spilling, consists of moving data between a
small but high bandwidth and low latency memory pool,
and a large but slow external memory. This has been demon-
strated to effectively offload the data stored on a GPU device
onto the host memory [64, 38, 54], but again increases train-
ing time due to extra memory transfers.

• More recently, combining several of these techniques has
been proposed to increase their effectiveness and mitigate
their drawbacks [4, 62] without fully eliminating them.

Additionally, some techniques developed primarily to in-
crease execution speed are also beneficial for memory:
• Operator fusion can reduce memory footprint by avoiding

the need to materialize large intermediate buffers and keep
them around for backpropagation [58].

• Machine learning frameworks such as PyTorch [61] and Ten-
sorFlow [1] allow some of their operators to store the data
they generate in one of their input tensors, thus avoiding the
need to allocate an output tensor. This is known as in-place-
update, and saves memory. However, users must manually
modify their neural networks to leverage this capability, and
it can lead to correctness issues if used indiscriminately [60].

Optimizing the location of tensors in memory to reduce
fragmentation, also known as the dynamic storage allocation
problem, is NP-hard [30]. This problem has been studied in
the context of deep learning by other researchers [65] who
proposed an exact formulation to minimize the memory frag-
mentation of deep neural networks. However, their approach
scaled poorly and only succeeded in optimizing two small neu-

ral networks in inference mode. As a result, they ultimately
advocated for a heuristics based approach.

Improving the lifetime of tensors has also been studied be-
fore. Liberis et al. [48] and Serenity [2] looked for a memory-
optimal execution schedule by enumerating the topological
orders of the DNN graph and calculating their peak mem-
ory usage. To speed things up, they both proposed dynamic
programming based optimizations to prune the number of or-
derings they needed to consider. However, the complexity of
their algorithms remains prohibitive at O(|V | ∗ 2|V |) in both
cases, and they only managed to make them work for infer-
ence on tiny graphs. Lin et al. [52] also mentioned reordering
computations as a way to enable operator fusion and reduce
the peak memory footprint while training. Unfortunately, they
didn’t describe the algorithm they used to find a suitable node
ordering.

7. Conclusion

The limited memory capacity of the hardware used by deep
learning practitioners is one of the main challenges to train
state-of-the art neural networks. This "memory wall" limits
the size of the neural networks that can be trained, and ulti-
mately impacts the quality of their predictions. Furthermore,
as memory needs increase much faster than memory capacity,
we expect this memory bottleneck to worsen over time.

To alleviate memory scarcity, we proposed to optimize both
the lifetime and location of tensors in memory. We presented
an ILP formulation of the problem, and extended it with ad-
hoc simplifications to ensure that our approach scales to large
neural networks.

We tested our solution, OLLA, on a wide variety of neural
networks. We demonstrated experimentally that it can locate
tensors optimally in memory, thus eliminating the problem of
memory fragmentation. Furthermore, we showed that it further
decreases the peak memory usage of deep neural networks by
optimizing the lifetime of the tensors, and, by combining these
2 techniques, OLLA reduced peak memory usage by more than
30% on average.

We also emphasized the practicality of OLLA. We estab-
lished empirically that it scales well and can handle large
DNNs. We showed that it finds memory plans that are within
1% of optimal in less than 10 minutes (and often in mere sec-
onds), and measured that OLLA’s optimization time is more
than compensated for by eliminating the runtime overhead of
dynamic allocation during training.
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